Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(3): e55762, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597993

RESUMO

N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.


Assuntos
Adenosina , Metiltransferases , Adenosina/metabolismo , Metiltransferases/genética , Homeostase
2.
Cell Discov ; 8(1): 117, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316318

RESUMO

Long noncoding RNAs (lncRNAs) are usually 5' capped and 3' polyadenylated, similar to most typical mRNAs. However, recent studies revealed a type of snoRNA-related lncRNA with unique structures, leading to questions on how they are processed and how they work. Here, we identify a novel snoRNA-related lncRNA named LNC-SNO49AB containing two C/D box snoRNA sequences, SNORD49A and SNORD49B; and show that LNC-SNO49AB represents an unreported type of lncRNA with a 5'-end m7G and a 3'-end snoRNA structure. LNC-SNO49AB was found highly expressed in leukemia patient samples, and silencing LNC-SNO49AB dramatically suppressed leukemia progression in vitro and in vivo. Subcellular location indicated that the LNC-SNO49AB is mainly located in nucleolus and interacted with the nucleolar protein fibrillarin. However, we found that LNC-SNO49AB does not play a role in 2'-O-methylation regulation, a classical function of snoRNA; instead, its snoRNA structure affected the lncRNA stability. We further demonstrated that LNC-SNO49AB could directly bind to the adenosine deaminase acting on RNA 1(ADAR1) and promoted its homodimerization followed by a high RNA A-to-I editing activity. Transcriptome profiling shows that LNC-SNO49AB and ADAR1 knockdown respectively share very similar patterns of RNA modification change in downstream signaling pathways, especially in cell cycle pathways. These findings suggest a previously unknown class of snoRNA-related lncRNAs, which function via a manner in nucleolus independently on snoRNA-guide rRNA modification. This is the first report that a lncRNA regulates genome-wide RNA A-to-I editing by enhancing ADAR1 dimerization to facilitate hematopoietic malignancy, suggesting that LNC-SNO49AB may be a novel target in therapy directed to leukemia.

3.
Cell Rep ; 38(13): 110421, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354054

RESUMO

Small nucleolar RNAs (snoRNAs) are commonly acknowledged as a class of homogeneous non-coding RNAs that guide ribosomal RNA modifications. However, snoRNAs referred to as orphans have largely unknown functions. Here, we systematically profile chromatin-associated snoRNAs (casnoRNAs) in mammalian cells and identify a subgroup of orphan casnoRNAs responding to DNA damage stress, among which SNORA73 shows the most marked reduction in chromatin enrichment. Downregulated SNORA73 maintains cancer genome stability and differentiation block in hematopoietic malignancy. Mechanistically, casnoRNA the 5' end non-canonical structure of SNORA73 is critical for its function and binding to poly (ADP-ribose) polymerase 1 (PARP1). SNORA73 inhibits PARP1 auto-PARylation to affect cancer genome stability by forming a small nucleolar ribonucleoprotein (snoRNP) with PARP1 and canonical H/ACA proteins DKC1/NHP2. Our findings reveal the role of an orphan snoRNA serving as casnoRNA and highlights a link between non-canonical structure of snoRNA and their functional diversity.


Assuntos
Cromatina , RNA Nucleolar Pequeno , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Dano ao DNA/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética
4.
Mol Cell ; 81(21): 4493-4508.e9, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34555354

RESUMO

Initiation is the rate-limiting step in translation, and its dysregulation is vital for carcinogenesis, including hematopoietic malignancy. Thus, discovery of novel translation initiation regulators may provide promising therapeutic targets. Here, combining Ribo-seq, mass spectrometry, and RNA-seq datasets, we discovered an oncomicropeptide, APPLE (a peptide located in ER), encoded by a non-coding RNA transcript in acute myeloid leukemia (AML). APPLE is overexpressed in various subtypes of AML and confers a poor prognosis. The micropeptide is enriched in ribosomes and regulates the initiation step to enhance translation and to maintain high rates of oncoprotein synthesis. Mechanically, APPLE promotes PABPC1-eIF4G interaction and facilitates mRNA circularization and eIF4F initiation complex assembly to support a specific pro-cancer translation program. Targeting APPLE exhibited broad anti-cancer effects in vitro and in vivo. This study not only reports a previously unknown function of micropeptides but also provides new opportunities for targeting the translation machinery in cancer cells.


Assuntos
Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação Eucariótico 4G/metabolismo , Neoplasias Hematológicas/metabolismo , Peptídeos/química , Biossíntese de Proteínas , Animais , Progressão da Doença , Genoma Humano , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fases de Leitura Aberta , Polirribossomos/química , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Sensibilidade e Especificidade , Resultado do Tratamento
5.
Cancer Biol Med ; 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347395

RESUMO

OBJECTIVE: Investigation of the regulatory mechanisms of cell stemness in cholangiocarcinoma (CCA) is essential for developing effective therapies to improve patient outcomes. The purpose of this study was to investigate the function and regulatory mechanism of m6A modifications in CCA cell stemness. METHODS: Interleukin 6 (IL-6) treatment was used to induce an inflammatory response, and loss-of-function studies were conducted using mammosphere culture assays. Chromatin immunoprecipitation, polysome profiling, and methylated RNA immunoprecipitation analyses were used to identify signaling pathways. The in vitro findings were verified in a mice model. RESULTS: We first identified that m6A writers were highly expressed in CCAs and further showed that STAT3 directly bound to the gene loci of m6A writers, showing that IL-6/STAT3 signaling regulated expressions of m6A writers. Downregulating m6A writers prevented cell proliferation and migration in vitro and suppressed CCA tumorigenesis in vivo. Notably, the knockdown of m6A writers inhibited CCA cell stemness that was triggered by IL-6 treatment. Mechanistically, IGF2BP2 was bound to CTNNB1 transcripts, significantly enhancing their stability and translation, and conferring stem-like properties. Finally, we confirmed that the combination of m6A writers, IGF2BP2, and CTNNB1 distinguished CCA tissues from normal tissues. CONCLUSIONS: Overall, this study showed that the IL-6-triggered inflammatory response facilitated the expressions of m6A writers and cell stemness in an m6A-IGF2BP2-dependent manner. Furthermore, the study showed that m6A modification was a targetable mediator of the response to inflammation factor exposure, was a potential diagnostic biomarker for CCA, and was critical to the progression of CCA.

6.
J Hematol Oncol ; 14(1): 117, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315512

RESUMO

N6-methyladenosine (m6A) has emerged as an abundant modification throughout the transcriptome with widespread functions in protein-coding and noncoding RNAs. It affects the fates of modified RNAs, including their stability, splicing, and/or translation, and thus plays important roles in posttranscriptional regulation. To date, m6A methyltransferases have been reported to execute m6A deposition on distinct RNAs by their own or forming different complexes with additional partner proteins. In this review, we summarize the function of these m6A methyltransferases or complexes in regulating the key genes and pathways of cancer biology. We also highlight the progress in the use of m6A methyltransferases in mediating therapy resistance, including chemotherapy, targeted therapy, immunotherapy and radiotherapy. Finally, we discuss the current approaches and clinical potential of m6A methyltransferase-targeting strategies.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , Neoplasias/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Metiltransferases/genética , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/terapia , Transdução de Sinais
9.
Genome Biol ; 21(1): 269, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33143730

RESUMO

BACKGROUND: Long noncoding enhancer RNAs (lnc-eRNAs) are a subset of stable eRNAs identified from annotated lncRNAs. They might act as enhancer activity-related therapeutic targets in cancer. However, the underlying mechanism of epigenetic activation and their function in cancer initiation and progression remain largely unknown. RESULTS: We identify a set of lncRNAs as lnc-eRNAs according to the epigenetic signatures of enhancers. We show that these lnc-eRNAs are broadly activated in MLL-rearranged leukemia (MLL leukemia), an aggressive leukemia caused by a chromosomal translocation, through a mechanism by which the HOXA cluster initiates enhancer activity, and the epigenetic reader BRD4 cooperates with the coregulator MLL fusion oncoprotein to induce transcriptional activation. To demonstrate the functional roles of lnc-eRNAs, two newly identified lnc-eRNAs transcribed from the SEELA eRNA cluster (SEELA), SEELA1 and SEELA2, are chosen for further studies. The results show that SEELA mediated cis-activated transcription of the nearby oncogene Serine incorporate 2 (SERINC2) by directly binding to the K31 amino acid (aa) of histone H4. Chromatin-bound SEELA strengthens the interaction between chromatin and histone modifiers to promote histone recognition and oncogene transcription. Further studies show that the SEELA-SERINC2 axis regulated aspects of cancer metabolism, such as sphingolipid synthesis, to affect leukemia progression. CONCLUSIONS: This study shows that lnc-eRNAs are epigenetically activated by cancer-initiating oncoproteins and uncovers a cis-activating mechanism of oncogene transcription control based on lnc-eRNA-mediated epigenetic regulation of enhancer activity, providing insights into the critical roles of lnc-eRNAs in cancer initiation and progression.


Assuntos
Histonas/genética , Histonas/metabolismo , Leucemia/genética , RNA Longo não Codificante/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proliferação de Células , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/genética , Esfingolipídeos , Fatores de Transcrição/genética , Transcrição Gênica
10.
Cell Death Dis ; 11(7): 566, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703936

RESUMO

Aberrant chromosomal translocations leading to tumorigenesis have been ascribed to the heterogeneously oncogenic functions. However, how fusion transcripts exporting remains to be declared. Here, we showed that the nuclear speckle-specific long noncoding RNA MALAT1 controls chimeric mRNA export processes and regulates myeloid progenitor cell differentiation in malignant hematopoiesis. We demonstrated that MALAT1 regulates chimeric mRNAs export in an m6A-dependent manner and thus controls hematopoietic cell differentiation. Specifically, reducing MALAT1 or m6A methyltransferases and the 'reader' YTHDC1 result in the universal retention of distinct oncogenic gene mRNAs in nucleus. Mechanically, MALAT1 hijacks both the chimeric mRNAs and fusion proteins in nuclear speckles during chromosomal translocations and mediates the colocalization of oncogenic fusion proteins with METTL14. MALAT1 and fusion protein complexes serve as a functional loading bridge for the interaction of chimeric mRNA and METTL14. This study demonstrated a universal mechanism of chimeric mRNA transport that involves lncRNA-fusion protein-m6A autoregulatory loop for controlling myeloid cell differentiation. Targeting the lncRNA-triggered autoregulatory loop to disrupt chimeric mRNA transport might represent a new common paradigm for treating blood malignancies.


Assuntos
Núcleo Celular/metabolismo , Leucemia/genética , RNA Longo não Codificante/metabolismo , Transporte Ativo do Núcleo Celular , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico/genética , Humanos , Leucemia/patologia , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
11.
J Hematol Oncol ; 13(1): 78, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552847

RESUMO

BACKGROUND: Mixed-lineage leukemia (MLL) gene rearrangements trigger aberrant epigenetic modification and gene expression in hematopoietic stem and progenitor cells, which generates one of the most aggressive subtypes of leukemia with an apex self-renewal. It remains a challenge to directly inhibit rearranged MLL itself because of its multiple fusion partners and the poorly annotated downstream genes of MLL fusion proteins; therefore, novel therapeutic targets are urgently needed. METHODS: qRT-PCR, receiver operating characteristic (ROC), and leukemia-free survival analysis were used to validate LAMP5-AS1 (LAMP5 antisense 1) expression and evaluate its clinical value. We performed in vitro and in vivo experiments to investigate the functional relevance of LAMP5-AS1 in MLL leukemia progression and leukemia cell stemness. RNA electrophoretic mobility shift assays (EMSA), histone methyltransferase assay, RNA pull-down assay, and RNA fluorescence in situ hybridization (FISH) were used to validate the relationship between LAMP5-AS1 and the methyltransferase activity of DOT1L. The downstream ectopic target genes of LAMP5-AS1/DOT1L were validated by the chromatin immunoprecipitation (ChIP) and western blot. RESULTS: We discovered that a long noncoding RNA (lncRNA) LAMP5-AS1 can promote higher degrees of H3K79 methylation, followed by upregulated expression of the self-renewal genes in the HOXA cluster, which are responsible for leukemia stemness in context of MLL rearrangements. We found that LAMP5-AS1 is specifically overexpressed in MLL leukemia patients (n = 58) than that in the MLL-wt leukemia (n = 163) (p < 0.001), and the patients with a higher expression level of LAMP5-AS1 exhibited a reduced 5-year leukemia-free survival (p < 0.01). LAMP5-AS1 suppression significantly reduced colony formation and increased differentiation of primary MLL leukemia CD34+ cells. Mechanistically, LAMP5-AS1 facilitated the methyltransferase activity of DOT1L by directly binding its Lys-rich region of catalytic domain, thus promoting the global patterns of H3K79 dimethylation and trimethylation in cells. These observations supported that LAMP5-AS1 upregulated H3K79me2/me3 and the transcription of DOT1L ectopic target genes. CONCLUSIONS: This is the first study that a lncRNA regulates the self-renewal program and differentiation block in MLL leukemia cells by facilitating the methyltransferase activity of DOT1L and global H3K79 methylation, showing its potential as a therapeutic target for MLL leukemia.


Assuntos
Autorrenovação Celular/genética , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Neoplásicas/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA Antissenso/genética , RNA Neoplásico/genética , Animais , Pré-Escolar , Feminino , Regulação Leucêmica da Expressão Gênica/genética , Vetores Genéticos/genética , Xenoenxertos , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Lisina/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Organismos Livres de Patógenos Específicos , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
12.
J Hematol Oncol ; 12(1): 103, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623653

RESUMO

BACKGROUND: Circular RNAs (circRNAs) represent a type of endogenous noncoding RNAs that are generated by back-splicing events and favor repetitive sequences. Recent studies have reported that cancer-associated chromosomal translocations could juxtapose distant complementary repetitive intronic sequences, resulting in the aberrant formation of circRNAs. However, among the reported fusion genes, only a small number of circRNAs were found to originate from fusion regions during gene translocation. We question if circRNAs could also originate from fusion partners during gene translocation. METHODS: Firstly, we designed divergent primers for qRT-PCR to identify a circRNA circAF4 in AF4 gene and investigated the expression pattern in different types of leukemia samples. Secondly, we designed two small interfering RNAs specially targeting the back-spliced junction point of circAF4 for functional studies. CCK8 cell proliferation and cell cycle assay were performed, and a NOD-SCID mouse model was used to investigate the contribution of circAF4 in leukemogenesis. Finally, luciferase reporter assay, AGO2 RNA immunoprecipitation (RIP), and RNA Fluorescent in Situ Hybridization (FISH) were performed to confirm the relationship of miR-128-3p, circAF4, and MLL-AF4 expression. RESULTS: We discovered a circRNA, named circAF4, originating from the AF4 gene, a partner of the MLL fusion gene in MLL-AF4 leukemia. We showed that circAF4 plays an oncogenic role in MLL-AF4 leukemia and promotes leukemogenesis in vitro and in vivo. More importantly, knockdown of circAF4 increases the leukemic cell apoptosis rate in MLL-AF4 leukemia cells, while no effect was observed in leukemia cells that do not carry the MLL-AF4 translocation. Mechanically, circAF4 can act as a miR-128-3p sponge, thereby releasing its inhibition on MLL-AF4 expression. We finally analyzed most of the MLL fusion genes loci and found that a number of circRNAs could originate from these partners, suggesting the potential roles of fusion gene partner-originating circRNAs (named as FP-circRNAs) in leukemia with chromosomal translocations. CONCLUSION: Our findings demonstrate that the abnormal elevated expression of circAF4 regulates the cell growth via the circAF4/miR-128-3p/MLL-AF4 axis, which could contribute to leukemogenesis, suggesting that circAF4 may be a novel therapeutic target of MLL-AF4 leukemia.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , RNA Circular/metabolismo , Animais , Apoptose , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular , Proliferação de Células , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Neoplasias Experimentais , Proteínas de Fusão Oncogênica/genética
13.
Blood ; 134(18): 1533-1546, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31387917

RESUMO

Internal tandem duplication (ITD) mutations within FMS-like tyrosine kinase-3 (FLT3) occur in up to 30% of acute myeloid leukemia (AML) patients and confer a very poor prognosis. The oncogenic form of FLT3 is an important therapeutic target, and inhibitors specifically targeting FLT3 kinase can induce complete remission; however, relapse after remission has been observed due to acquired resistance with secondary mutations in FLT3, highlighting the need for new strategies to target FLT3-ITD mutations. Recent studies have reported that the aberrant formations of circular RNAs (circRNAs) are biological tumorigenesis-relevant mechanisms and potential therapeutic targets. Herein, we discovered a circRNA, circMYBL2, derived from the cell-cycle checkpoint gene MYBL2. circMYBL2 is more highly expressed in AML patients with FLT3-ITD mutations than in those without the FLT3-ITD mutation. We found that circMYBL2 knockdown specifically inhibits proliferation and promotes the differentiation of FLT3-ITD AML cells in vitro and in vivo. Interestingly, we found that circMYBL2 significantly influences the protein level of mutant FLT3 kinase, which contributes to the activation of FLT3-ITD-dependent signaling pathways. Mechanistically, circMYBL2 enhanced the translational efficiency of FLT3 kinase by increasing the binding of polypyrimidine tract-binding protein 1 (PTBP1) to FLT3 messenger RNA. Moreover, circMYBL2 knockdown impaired the cytoactivity of inhibitor-resistant FLT3-ITD+ cells, with a significant decrease in FLT3 kinase expression, followed by the inactivation of its downstream pathways. In summary, we are the first to reveal a circRNA that specifically influences FLT3-ITD AML and regulates FLT3 kinase levels through translational regulation, suggesting that circMYBL2 may be a potential therapeutic target for FLT3-ITD AML.


Assuntos
Proteínas de Ciclo Celular/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Circular/genética , Transativadores/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Biossíntese de Proteínas , Sequências de Repetição em Tandem
14.
Clin Cancer Res ; 25(9): 2795-2808, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651276

RESUMO

PURPOSE: Despite many attempts to understand mixed-lineage leukemia (MLL leukemia), effective therapies for this disease remain limited. We identified a lysosome-associated membrane protein (LAMP) family member, LAMP5, that is specifically and highly expressed in patients with MLL leukemia. The purpose of the study was to demonstrate the functional relevance and clinical value of LAMP5 in the disease. EXPERIMENTAL DESIGN: We first recruited a large cohort of leukemia patients to validate LAMP5 expression and evaluate its clinical value. We then performed in vitro and in vivo experiments to investigate the functional relevance of LAMP5 in MLL leukemia progression or maintenance. RESULTS: LAMP5 was validated as being specifically and highly expressed in patients with MLL leukemia and was associated with a poor outcome. Functional studies showed that LAMP5 is a novel autophagic suppressor and protects MLL fusion proteins from autophagic degradation. Specifically targeting LAMP5 significantly promoted degradation of MLL fusion proteins and inhibited MLL leukemia progression in both an animal model and primary cells. We further revealed that LAMP5 is a direct target of the H3K79 histone methyltransferase DOT1L. Downregulating LAMP5 with a DOT1L inhibitor enhanced the selective autophagic degradation of MLL oncoproteins and extended survival in vivo; this observation was especially significant when combining DOT1L inhibitors with LAMP5 knockdown. CONCLUSIONS: This study demonstrates that LAMP5 serves as a "bodyguard" for MLL fusions to evade degradation and is the first to link H3K79 methylation to autophagy regulation, highlighting the potential of LAMP5 as a therapeutic target for MLL leukemia.


Assuntos
Biomarcadores Tumorais/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia/patologia , Proteínas de Fusão Oncogênica/metabolismo , Animais , Apoptose , Autofagia , Biomarcadores Tumorais/genética , Proliferação de Células , Seguimentos , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia/genética , Leucemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Prognóstico , Proteólise , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biol Chem ; 398(4): 509-517, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865090

RESUMO

As a crucial protein, the herpes simplex virus 1 (HSV-1) UL2 protein has been shown to take part in various stages of viral infection, nonetheless, its exact subcellular localization and transport molecular determinants are not well known thus far. In the present study, by using live cells fluorescent microscopy assay, UL2 tagged with enhanced yellow fluorescent protein was transiently expressed in live cells and showed a completely nuclear accumulation without the presence of other HSV-1 proteins. Moreover, the nuclear transport of UL2 was characterized to be assisted by multiple transport pathways through Ran-, importin α1-, α5-, α7-, ß1- and transportin-1 cellular transport receptors. Consequently, these results will improve understanding of UL2-mediated biological functions in HSV-1 infection cycles.


Assuntos
Herpes Simples/fisiopatologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Uracila-DNA Glicosidase/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Frações Subcelulares , Distribuição Tecidual , Uracila-DNA Glicosidase/genética , Proteínas Virais/genética , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
16.
Arch Virol ; 161(9): 2379-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27276975

RESUMO

The herpes simplex virus 1 (HSV-1) UL31 protein is a multifunctional nucleoprotein that is important for viral infection; however, little is known concerning its subcellular localization signal. Here, by transfection with a series of HSV-1 UL31 deletion mutants fused to enhanced yellow fluorescent protein (EYFP), a bipartite nuclear localization signal (NLS) was identified and mapped to amino acids (aa) 1 to 27 (MYDTDPHRRGSRPGPYHGKERRRSRSS). Additionally, fluorescence results showed that the predicted nuclear export signal (NES) might be nonfunctional, and the functional NES of UL31 might require a specific conformation. Taken together, these results would provide significant information for the study of the biological function of UL31 during HSV-1 infection.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Herpesvirus Humano 1/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias , Células COS , Chlorocebus aethiops , Clonagem Molecular , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Proteínas Luminescentes , Mutação , Sinais de Localização Nuclear/genética , Proteínas Nucleares/genética , Transporte Proteico , Proteínas Virais/genética
17.
Biol Chem ; 397(6): 555-61, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854290

RESUMO

As an important protein, UL31 has been demonstrated to play multiple roles in herpes simplex virus 1 (HSV-1) replication. Previous studies showed that UL31 predominantly locates in the nucleus in chemical fixed cells and live cells, however, the determining mechanisms for its nuclear translocation is not clear. In the present study, by utilizing live cells fluorescent microscopy and co-immunoprecipitation assays, the nuclear import of UL31 was characterized to be dependent on Ran-, importin α1- and transportin-1-mediated pathway. Therefore, these results will promote the understanding of UL31-mediated biological functions in HSV-1 infection cycle.


Assuntos
Núcleo Celular/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/fisiologia , Humanos , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
18.
Cell Biosci ; 6: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26816613

RESUMO

BACKGROUND: Herpes simplex virus 1 (HSV-1) ICP22 is a multifunctional protein and important for HSV-1 replication. Pseudorabies virus (PRV) ICP22 (P-ICP22) is a homologue of HSV-1 ICP22 and is reported to be able to selectively modify the transcription of different kinetic classes of PRV genes, however, the subcellular localization, localization signal and molecular determinants for its transport to execute this function is less well understood. RESULTS: In this study, by utilizing live cells fluorescent microscopy, P-ICP22 fused to enhanced yellow fluorescent protein (EYFP) gene was transient expressed in live cells and shown to exhibit a predominantly nucleus localization in the absence of other viral proteins. By transfection of a series of P-ICP22 deletion mutants fused to EYFP, a bona fide nuclear localization signal (NLS) and its key amino acids (aa) of P-ICP22 was, for the first time, determined and mapped to aa 41-60 (PASTPTPPKRGRYVVEHPEY) and aa 49-50 (KR), respectively. Besides, the P-ICP22 was demonstrated to be targeted to the nucleus via Ran-, importin α1-, and α7-mediated pathway. CONCLUSIONS: Our findings reported herein disclose the NLS and molecular mechanism for nuclear transport of P-ICP22, these results will uncover new avenues for depicting the biological roles of P-ICP22 during PRV infection.

19.
Arch Biochem Biophys ; 587: 12-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26450651

RESUMO

Herpes simplex virus 1 (HSV-1) UL31 is a multifunctional protein and important for HSV-1 infection. Pseudorabies virus (PRV) UL31 is a late protein homologous to HSV-1 UL31. Previous studies showed that PRV UL31 is predominantly localized to nucleus, however, the molecular determinants for its nuclear import were unclear to date. Here, by utilizing live cells fluorescent microscopy, UL31 fused with enhanced yellow fluorescent protein was transiently expressed in live cells and confirmed to exclusively target to the nucleus in the absence of other viral proteins. Furthermore, the nuclear import of UL31 was found to be dependent on the Ran-, importin α1-, α3-, α5-, α7-, ß1-and transportin-1-mediated pathway. Therefore, these results would open up new avenues for depicting the biological functions of UL31 during PRV infection.


Assuntos
Núcleo Celular/virologia , Herpesvirus Suídeo 1/fisiologia , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Carioferinas/metabolismo , Transdução de Sinais
20.
Arch Virol ; 160(10): 2591-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195191

RESUMO

The pseudorabies virus (PRV) UL31 protein (pUL31) is a homologue of the herpes simplex virus 1 pUL31, which is a multifunctional protein that is important for HSV-1 infection. However, little is known concerning the subcellular localization signal of PRV UL31. Here, by transfection with a series of PRV UL31 deletion mutants fused to an enhanced yellow fluorescent protein (EYFP) gene, a bipartite nuclear localization signal (NLS) and a PY motif NLS of UL31 were identified and mapped to amino acids (aa) 4 to 20 (RRRLLRRKSSAARRKTL) and aa 21 to 34 (TRAARDRYAPYFAY), respectively. Additionally, the predicted nuclear export signal (NES) was shown to be nonfunctional. Taken together, this information opens up new avenues for investigating the biological functions of UL31 during PRV infection.


Assuntos
Núcleo Celular/metabolismo , Herpesvirus Suídeo 1/metabolismo , Sinais de Localização Nuclear , Pseudorraiva/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/virologia , Herpesvirus Suídeo 1/química , Herpesvirus Suídeo 1/genética , Dados de Sequência Molecular , Transporte Proteico , Pseudorraiva/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...